Promoted dehydrogenation in ammine lithium borohydride supported by carbon nanotubes.

نویسندگان

  • Xinyi Chen
  • Shaofeng Li
  • Yanhui Guo
  • Xuebin Yu
چکیده

In this paper, ammine lithium borohydride (LiBH(4)·NH(3)) was successfully impregnated into multi-walled carbon nanotubes (CNTs) through a melting technique. X-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller, and density measurements were employed to confirm the formation of the nanostructured LiBH(4)·NH(3)/CNTs composites. As a consequence, it was found that the dehydrogenation of the loaded LiBH(4)·NH(3) was remarkably enhanced, showing an onset dehydrogenation at temperatures below 100 °C, together with a prominent desorption of pure hydrogen at around 280 °C, with a capacity as high as 6.7 wt.%, while only a trace of H(2) liberation was present for the pristine LiBH(4)·NH(3) in the same temperature range. Structural examination indicated that the significant modification of the thermal decomposition route of LiBH(4)·NH(3) achieved in the present study is due to the CNT-assisted formation of B-N-based hydride composite, starting at a temperature below 100 °C. It is demonstrated that the formation of this B-N-based hydride covalently stabilized the [NH] groups that were weakly coordinated on Li cations in the pristine LiBH(4)·NH(3)via strong B-N bonds, and furthermore, accounted for the substantial hydrogen desorption at higher temperatures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vanadium Oxide Supported on Al-modified Titania Nanotubes for Oxidative Dehydrogenation of Propane

In this study, characterization of vanadia supported on Al-modified titania nanotubes (TiNTs) synthesized by the alkaline hydrothermal treatment of TiO2 powders has been reported. A promising catalyst for oxidative dehydrogenation (ODH) of propane was prepared via the incipient wetness impregnation method. The morphology and crystalline structure of TiNTs were characterized by transmission elec...

متن کامل

Buckyball-, carbon nanotube-, graphite-, and graphene-enhanced dehydrogenation of lithium aluminum hydride.

Compared to C60, carbon nanotubes, and graphite, graphene more effectively lowers the dehydrogenation temperature and improves the dehydrogenation kinetics of LiAlH4. With 15 wt% graphene incorporation, the initial hydrogen release temperature is ~80 °C (60 °C lower than that of pristine LiAlH4).

متن کامل

Ni-promoted synthesis of graphitic carbon nanotubes from in situ produced graphitic carbon for dehydrogenation of ethylbenzene.

Graphitic carbon nanotubes (GCNTs) were fabricated from in situ produced graphitic carbon by calcining biomass/melamine/Ni(NO3)2·6H2O. Ni-based hybrids (NiOx@GCNTs) displayed superior catalytic capacity in direct dehydrogenation of ethylbenzene. The specific reaction rate can reach up to 8.1 μmol m(-2) h(-1), and unprecedented stability was obtained over 165 h without any activation process.

متن کامل

In situ X-ray Raman spectroscopy of LiBH4.

X-Ray Raman Spectroscopy (XRS) is used to study the electronic properties of bulk lithium borohydride (LiBH(4)) and LiBH(4) in porous carbon nano-composites (LiBH(4)/C) during dehydrogenation. The lithium (Li), boron (B) and carbon (C) K-edges are studied and compared with calculations of the starting material and intermediate compounds. Comparison of the B and C K-edge XRS spectra of the as-pr...

متن کامل

Metal/graphene nanocomposites synthesized with the aid of supercritical fluid for promoting hydrogen release from complex hydrides.

With the aid of supercritical CO2, Fe-, Ni-, Pd-, and Au-nanoparticle-decorated nanostructured carbon materials (graphene, activated carbon, carbon black, and carbon nanotubes) are synthesized for catalyzing the dehydrogenation of LiAlH4. The effects of the metal nanoparticle size and distribution, and the type of carbon structure on the hydrogen release properties are investigated. The Fe/grap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Dalton transactions

دوره 40 38  شماره 

صفحات  -

تاریخ انتشار 2011